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Abstract 
In response to stakeholder demands for both less uncertain regional climate change 
predictions and probabilistic information, new methods have been developed for 
synthesizing the results from numerous climate model experiments. This report 
describes a new method for generating probability density functions for scaled 
warming and net warming for points over south-east Australia. The method allows for 
weighting of different model results and has been demonstrated using the results from 
four models. In addition, a method for weighting different model results has also been 
developed and this is demonstrated using the results for rainfall for the Murray 
Darling Basin region from 22 models. Project 2.2.3b will demonstrate the results of 
the application of these new methods to the key regions. 
 
Significant research highlights, breakthroughs and snapshots 

• A trial set of probability distributions for DJF temperature change at a grid 
point in the vicinity of the MDB indicates a mean net warming of about 
+4.0oC at 2100.  

 
• Results also indicate that severe weighting, based on model performance 

criteria, can result in a significantly different mean response for MDB rainfall 
than that based on equal weighting of all model results. Preliminary results 
indicate the mean response is much drier. 

 
• There is now an increasing recognition amongst the research community of 

the importance of careful assessment of climate model simulations before their 
results are used in impacts studies. This was refelected in feedback from a 
Climate and Hydrology Symposium recently held in Canberra where some of 
this work was reported. 

 
Statement of results, their interpretation, and practical significance against each 
objective 

Objective 1: To develop new methods for projections for the MDB and the 
CMA regions of Victoria using a multi-model weighted approach.  

The technique for developing probability distributions is sufficiently general to be 
extended to a larger set of model results and other variables. It will be used to produce 
a new set of Australia-wide set of projections based on the IPCC Fourth Assessment 
Report model results. 

 
Objective 2:  

To provide information in response to stakeholder feedback which indicate a 
preference for probabilities. 

The results indicate that estimates for the 5% and 95% confidence thresholds for DJF 
arming at 2100 are about +2.8 oC and +3.2 oC respectively.  
They also indicate a potentially significant shift in derived probabilities for rainfall 
projections. These appear to be much less uncertain than previously shown. This will 
be further examined as part of Project 2.3.b. 
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1. Background 
 
Projections at regional scales tend to be accompanied by relatively large uncertainties 
due to differences in model formulations, resolution, and simulated responses 
combined with differences in possible future emission scenarios (CSIRO, 2006; 
Whetton et al, 2005). Model developments, including improved physical 
parameterizations and the use of higher spatial resolutions, plus more simulations (i.e. 
the creation of multi-model ensembles) can potentially improve the reliability of 
regional scale results but it is apparent they will always be accompanied by some 
level of uncertainty. 
 
Recently,  regional rainfall projections produced by Whetton et al. (2005), CSIRO 
(2006) and Suppiah et al. (2007) used methods similar to those described Giorgi and 
Mearns (2002) in which a range of model results are sorted according to how well 
they represent features of the present day climate, but the projections simply 
presented as ranges of (equally likely) outcomes. Even so, the ranges remained 
relatively wide, particularly for south-eastern Australia (SEA), and there was not a 
great deal of difference between these and the previous projections based on fewer 
models and less stringent criteria (CSIRO, 2001). Stakeholders would like to see 
uncertainty minimized if possible and/or to have it quantified in a more useful fashion 
(i.e. generally in the form of probabilities or, more specifically, probability density 
functions (PDFs)). This is evident from key messages which emerged from a recent 
survey of focus groups (“2007 climate change projections for Australia: stakeholder 
feedback”): 

• Generally, stakeholders are interested in the best case scenario, the worst case 
scenario, the most likely scenario and business as usual 

• Likelihood is an important factor, so including probabilities is essential 
• Stakeholders want to be able to compare 2007 projections with 2001 

projections and with observations 
• Stakeholders want regional information 

 
For the Third Assessment Report (IPCC, 2001) there were 15 sets of model results 
available for preparing projections but 23 sets of results were available for the Fourth 
Assessment Report (AR4) (IPCC, 2007).  
 
In this report we describe and demonstrate a method for generating probabilistic 
information. 
This approach forms the basis of the new CSIRO/BoM climate change projections to 
be released later this year (Watterson, 2007). In addition we also describe and 
demonstrate a method for weighting the various model results. Appendices 1 and 2 
contain further details of these methods. 
 
2. Generating probabilistic climate change projections 
 
The main aim is to provide a confidence weighting throughout the range of change 
considered plausible, basing this on the data from simulations by a number of current 
climate models. For most quantities this means, in effect, a ‘probability density 
function’ (PDF) for the change variable. Several recent studies have provided such 
results based on various approaches and assumptions, often of considerable 
complexity. A new, relatively simple method, has been applied to the results from 
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four models to produce surface warming projections for a point over south east 
Australia.  
 
A number of methods for generating a PDF for scaled warming are illustrated in Fig. 
1.  Allowing for statistical uncertainty, the true value for each model (from multiple 
runs) is assumed to be from a simple normal PDF centred on the sample value. The 
uncertainty is determined from that appropriate to differences of two 30-y means, 
assuming these follow from the interannual standard deviation (SD) field, then scaled. 
The weighted sum of the four individual distributions is the ‘Sum’ PDF in Fig 1. 
(Weights used here are described in Appendix 1.) The normal distribution fitted to 
this Sum curve is also shown (as Normal). The beta distribution fit to the Sum curve 
is also shown. The ‘Uniform’ distribution is between the smallest and largest of the 
four change ratios. The final curve ‘Narrow’ is a normal fit to Sum, but with the SD 
reduced by the square root of the ‘effective number of models’. This distribution 
would be appropriate if one considered the various model results to be a sample from 
a normal distribution centred on the ‘true’ change.  
 

 
 
Figure. 1. Probability distribution functions for the warming ratio (local to global 
average warming) at a point over southeast Australia.  
 
The warming ratio needs to be combined with the actual global mean warming (with 
its associated uncertainty) to produce a net change. The assumption is made that the 
scaled local change and the global warming are considered two independent variables. 
The joint distribution function is simply the product of the two PDFs. Statistics of the 
net local change can be determined numerically from this joint function. 
 
For the A1B scenario in 2100, a value global average warming of around 3 K (or °C) 
is suggested by  models. If, for simplicity it is assumed to be exactly 3K (i.e. SD=0.0 
K), then the joint PDF for the local warming has the same shape as the scaled 
warming PDF. If the global warming is uncertain with SD=1 K, then the net warming 
PDFs for the central point are shown in Figure 2. The differences are surprisingly 
small. The Uniform and Narrow cases give a slightly narrower net warming.  
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Figure 2. Probability distribution function for net warming at the point calculated 
from the five warming ratio PDFs and assuming the SD for global warming is 1K. 

 
An intermediate case (SD=0.2 K) produces the net warming curves for the central 
point shown in Fig. 3. The PDFs more closely reflect the differences in Fig. 1. 
 

 
 
Figure 3. Probability distribution function for net warming at the point calculated 
from the five warming ratio PDFs and assuming the SD for global warming is 0.2 K. 
 
3. Selecting climate change results based on model performance 
 
Here we describe an assessment of models rainfall results for the Murray Darling 
Basin (MDB) region. This technique can be used to restrict the number of models 
contributing to the calculated PDFs described above. 
 
23 AR4 model results (based on the A1B emissions scenario) were assessed. Several 
approaches were taken to determine the best models performing models with regard to 
Australia wide annual and seasonal rainfall. A set of best model results were selected 
as those with above median spatial correlation coefficients and those with below 
median root mean square errors. In addition to assessing the seasonal mean values, the 
models were also assessed in terms of their ability to reproduce the seasonal cycle of 
rainfall at several key locations, including the MDB. Finally, the results from the 
coarse resolution models were excluded since previous studies have highlighted the 
importance of horizontal resolution and the representation of topography as crucial to 
model rainfall. 
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The details of the full assessment are not shown here but, it is apparent that some 
simulations are clearly inferior, failing to adequately reproduce either the broad 
spatial patterns or the quantitative amounts. Of the 22 models, 7 were assessed to 
provide the best simulations of present day rainfall: 
(GFDL-Cm2.0, ECHAM5, GISS-AOM, UKMO-HADcm3, MIROC3.2 (hires), 
GFDL-CM2.1 and UKMO-HADgem1).  
 
Annual and seasonal percentage changes in rainfall for the period 2071-2100 relative 
to 1971-2000 based on the results using the A1B emissions scenarios (a mid-range 
scenario) were calculated for each model. These values are shown in Table 1. 
 
Table 1. List of 22 model results for the projected percentage change in rainfall (2071 
to 2100) vs (1971-2000). The top 7 selected models are highlighted.  

 Percentage change in rainfall 
 Model  Annual  Seasonal 

    DJF MAM JJA SON 
 CSIRO-Mk3  -11.322 4.466 -15.344 -21.270 -30.431
 GFDL-CM2.0  -12.410 28.991 3.562 -24.669 -34.333
 MRI-CGCM2.3.2  -10.466 -23.397 -21.245 -23.397 -5.572
 ECHAM5/MPI  -13.484 -5.725 15.261 -31.692 -32.450
 GISS-ER  5.210 20.388 1.922 -17.495 -1.846
 FGOALS-G1.0  -4.575 -3.917 -10.238 -5.016 -1.659
 MIROC3.2(medres)  20.688 48.390 41.733 -11.238 -0.223
 ECHO-G  22.783 59.088 22.942 -16.677 1.451
 CCSM3  7.205 12.315 7.876 -10.856 15.790
 GISS-AOM  -20.329 -28.843 19.923 -26.280 -29.721
 UKMO-Hadcm3  -14.435 -7.082 6.650 -10.674 -40.274
 GISS-EH  18.648 23.904 19.404 13.046 13.502
 INM-cm3.0  -6.851 7.147 3.022 -19.065 -17.389
 MIROC3.2(hires)  -6.016 5.458 6.496 -13.575 -25.254
 CGCM3.1(t47)  11.343 6.238 14.308 15.988 8.202
 GFDL2.1  -19.963 -1.245 -23.409 -46.104 -12.085
 CGCM3.1(t63)  18.705 34.496 14.570 11.931 11.583
 BCCR-BCM2  10.103 12.732 37.770 -12.632 5.467
 CNRM-CM3  -7.372 7.360 18.003 -36.970 -35.549
 IPSL-CM4  -33.637 -19.862 -31.908 -34.185 -52.639
 UKMO-HADGEM1  -18.704 8.374 -28.881 -35.057 -30.272
 PCM  -5.919 -7.968 -9.864 11.399 -16.497

 
22-model average -3.2 8.2 4.2 -16 -14 

22-model range -33 to +23 -24 to +59 -31 to +42 
-46 to 
+16 

-53 to 
+16 

Best 7 average -15 -0.01 -0.06 -27 -29 
Best 7 range -20 to -6 -29 to +8 -29 to +20 -46 to -11 -40 to -12 

 
The important result from this assessment is that the average changes from the best 7 
models are more negative than the 22-model averages. Furthermore, this is not purely 
an artifact of the different sample sizes. T-statistics indicate that the best-7 sample 
results for rainfall and changes are significantly different to those of the remaining 15 
models. For example, the chances that the 7-model average percentage change in 
annual rainfall (-15%) comes from the same population as the remaining 15 models is 
close to .001. In other words, the 7-best models form a distinctly different sub-set to 
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the other models. This is what we would expect if a poor simulation of present day 
climate is associated with an unreliable prediction of future climate. 
 
These results need to be confirmed and recast into probabilities but it is apparent that 
the application of this new method paints a somewhat more pessimistic outlook for 
rainfall over the MDB into the future than previously indicated. We expect that it will 
be possible (Project 2.2.3b) to refine the projections for this region to better satisfy 
stakeholder expectations. 
 
4. Summary 
 

• Five different types of scaled warming PDF have been considered. Support for 
using each of these could be argued, although the uniform distribution, with no 
weighting of models is clearly outdated. The three other methods of fitting the 
spread of individual model results produce rather similar net warmings. 

 
• A careful analysis of the performance of IPCC climate models at reproducing 

features of Australian rainfall has been undertaken. The results suggest that 7 
(of the 23 assessed) should be accorded relatively high weightings when 
preparing PDFs. 

 
The project objectives have been met and these findings will be used to generate 
the probabilistic information as described under Project 2.2.3b 
 

Summary of methods and modifications (with reasons) 
No modifications 
 
Summary of links to other projects 
The techniques that have been developed can now be applied to results for 
temperature and rainfall for the MDB and CMA regions as deliverables for Project 
2.2.3b. 
 
Recommendations for changes to work plan from your original table 
Nil 
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Project Milestone Reporting Table 

Develop 

improved 

regional 

projection 

techniques 

Report 

produced. 

30/6/07 70 Techniques for 

deriving probability 

functions at grid points 

over the regions of 

interest have been 

developed. 

 

The effect of model 

weighting on the mean 

response has been 

demonstrated to be 

significant and an 

important component 

in deriving the 

probability functions. 

None 
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Appendix 1 
Probabilistic Climate Change Projections for South East Australia: 
Surface Warming Examples 
 
Ian G. Watterson 
 
 
1. Introduction 
 
We wish to provide improved methods of projecting climate change for Australia, 
building on the previous Climate Impact Group (CIG) approach described by Whetton 
et al. (2005). The main aim is to provide a confidence weighting throughout the range 
of change considered plausible, basing this on the data from simulations by a number 
of current climate models. For most quantities this means, in effect, a ‘probability 
density function’ (PDF) for the change variable. Several recent studies have provided 
such results based on various approaches and assumptions, often of considerable 
complexity. A new, relatively simple method, extending that of the CIG, was outlined 
in my previous note (Watterson, 2006). This is applied to a more realistic case here, to 
produce surface warming projections over south east Australia (specifically, the 
domain depicted in Figure 1). The models used and a simple estimation of weighting 
of them is presented in section 2. (I am able to make use of results prepared for both 
the SEACI and ACCSP modelling projects here.) Patterns of change (scaled by global 
mean warming) are considered in Section 3, and probabilistic scaled warming is 
presented, determined using five approaches. The distributions for net warming under 
three idealised global mean warming distributions are calculated and presented in 
Section 4. 
 
2. GCM simulations of climate and climate change for South East Australia  
 
In support of the 2007 Fourth Assessment Report on climate change by the IPCC, a 
major climate simulation project has been organised by the World Climate Research 
Program. Some 17 modelling centres from 9 countries have performed simulations of 
the period 1870-2100 and beyond, using their current climate models. The 
experiments include prescribed greenhouse gas (GHG) and aerosol changes based on 
observations to 2000, then following one of three SRES scenarios to 2100, with 
constant forcing thereafter. Data from some 22 models are currently being considered 
for the new CSIRO projections. This report considers only four individual models, but 
briefly compares these to the ‘multi-model mean’ (courtesy Julie Arblaster). The 
models are listed in Table 1. Preliminary data from the new version of CSIRO’s 
current model ‘Mk3.5’ are included here. Results from HadGem and GFDL are 
courtesy of Janice Bathols and Ian Macadam. 
 
Averages for both the full year and the four seasons over the period 1961-1990 have 
been formed for a number of quantities, including surface air temperature, 
precipitation and sea-level pressure. These are presented in my upcoming report for 
SEACI. A simple skill assessment of these quantities is shown in Fig. 2. All four 
models simulate both the area mean and local values quite well, in comparison to the 
0.25° gridded observational data for temperature and precipitation from the Bureau of 
Meteorology. Data from ERA reanalyses are used as the observational fields for SLP. 
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Interestingly, the multi-model mean compares slightly better than the individual 
models, except that HadGem just beats it in two quantities. The ERA rainfall field 
suffers from well-known problems and scores no better than the models. Some bias 
may exist from using the averages of daily max and min temperatures as the 
observational field.  
 
Consideration of an appropriate weighting of models is not the topic of this note. 
Ideally, this could be based on the (hypothetical) ability of models to simulate the 
local climate change in a particular field, scaled (or normalised) by the global mean 
warming. For illustration, we consider here the mean of the seasonal averages in Fig. 
2, averaged over the three quantities, as a weight. Dividing by the sum of the four 
results gives the numbers in Table 1. This rather uniform set of weights will be used 
for all grid points in the example presented shortly. 
 
Table 1. Models considered in the study, the weight assigned to them and the global 
mean warming to 2100 under A1B. 
 
Model Name Origin Weight Warming (K) 
Mark 3.0 CSIRO Atmospheric Research  0.234 2.21  
Mark 3.5 CSIRO Atmospheric Research 0.239 3.43 
HadGem UK Meteorological Office 0.273 3.53 
GFDL 2.1 Geophys. Fluid. Dyn. Lab., USA 0.254 2.76 
MMM Multi-Model Mean   2.89 
 
In the multi-model means, the ‘Murray Darling Basin’ regional annual mean change 
in temperature divided by the global mean is between 1.105 and 1.158 for all SRES 
scenarios and time periods. Thus, there appears to be little systematic bias in using 
scaled patterns over the region (see also Watterson, 2005).  
 
Changes from 1976 to 2100 have been determined by linear interpolation between the 
1961-90 and 2071-2100 averages. Global mean warmings for this span under the A1B 
scenario from the models are given in Table 1. (Note that there is no account of 
control model drift in these values, which would boost the Mk3.0 result to one close 
to the MMM result.) Maps of the scaled change of temperature for summer (DJF), 
interpolated to a common 1° grid, are shown in Fig. 1.  
 
The individual model results are determined from land points only (1a to 1d). As 
described by Watterson et al. (2006) simulations at 0.5° by CCAM show that a sharp 
drop in warming occurs at coasts, on going from land to ocean. It would seem wise to 
avoid linear interpolation between land and ocean points as a means of producing 
values near the real coastline. To assist in producing interpolated values nearer the 
coast, the model fields are first interpolated to a double grid, using extrapolation to the 
edges of coastal land squares. The final 1° grid fields are plotted using cell colouring. 
In fact, the HadGem and (apparently) GFDL models allow squares with fractional 
surface types. The relatively low values on points that extend beyond the true coast 
are a result of this. Averaging over the four models (with weights) avoids these values 
if points with less than four model results are omitted (compare the 1e and 1f maps). 
A weighted average of results simply interpolated from the full grid is in 1g. The 
difference over land is rather small in this case, due to the relatively high resolution of 
the models (2° or better). The simple average over all 22 models, 1h, produces less 
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abrupt land-sea contrast, partly due to differing and often coarser model grids and 
coastlines. 
 
3. Distributions for scaled change 
 
In the previous note, a number of methods for generating a PDF for scaled change of 
a certain quantity at a single point were described. These are illustrated in Fig. 3, 
using data for warming at the central point of the map, 142°E and 31°S. Allowing for 
statistical uncertainty, the true value for each model (from multiple runs) is assumed 
to be from a simple normal PDF centred on the sample value. The uncertainty is 
determined from that appropriate to differences of two 30-y means, assuming these 
follow from the interannual standard deviation field, then scaled. The available SD 
field from Mk3.0 is used for all models here, with the result scaled by 3K. The four 
sample change ratios here are 1.23, 1.42, 1.02 and 1.55. The common uncertainty SD 
is 0.11. The weighted sum of the four individual distributions is the ‘Sum’ PDF in Fig 
1. The normal distribution fitted to this Sum curve is also shown (as Normal). The 
range of ratio values allowed here extends from the point where the corresponding 
cumulative distribution (CDF) is 0.001 to the point where it is 0.999. 1000 values are 
used to provide close representation of all the curves. These will differ for each grid 
point –there being no need for them to be common here. 
 
The beta distribution fit to the Sum curve is also shown. Here the end points (two of 
the four parameters) give the 0.01 and 0.99 values of the CDF of Sum. The steep sides 
of Sum here lead to sharply dropping sides of Beta. The Uniform distribution is 
between the smallest and largest of the four change ratios. The choice of second 
smallest and largest (which would be unwise for four values) would match the 
original CIG approach.  
 
The final curve ‘Narrow’ is a normal fit to Sum, but with the SD reduced by the 
square root of the ‘effective N’. This is the number of models, with allowance for 
uneven weighting, being the inverse of the sum of the squared weights. This 
distribution would be appropriate if one considered the various model results to be a 
sample from a normal distribution centred on the ‘true’ change. It would represent a 
plausible distribution for the ‘true’ value, whose uncertainty will be smaller the more 
models are used, as in standard statistical theory. 
 
A range of statistics from each of these distributions can be determined. The means 
match that from the original model results -except in the Uniform case. The SDs vary 
somewhat, being smallest for Narrow, of course. Percentiles can be readily 
determined from the CDFs.  
 
Applying the methods to every grid point with four model (land) values produces a 
map of means that matches 1f (even Uniform is very close). Plotted in Fig. 4 are the 
10, 50 and 90 percentiles from all five cases. As anticipated from Fig. 3 the 10 to 90 
range is usually smaller for Uniform and Narrow than for the other three. 
 
4. Net warming for 2100 
 
As in the CIG method, the patterns of scaled warming need to be combined with a 
global mean warming distribution to produce a net change. As described in the 
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previous note, the assumption is made that the scaled local change ‘x’ and the global 
warming ‘T’ are considered two independent variables. The joint distribution function 
is simply the product of the two PDFs. Statistics of the net local change can be 
determined numerically from this joint function. 
 
Consider first the trivial case, where one proposes that the global warming has 
reached a single specific amount. For the A1B scenario in 2100, a value around 3 K is 
suggested by the models (Table 1). Suppose for simplicity it is exactly 3K. Then the 
joint PDF for the local warming is only trivially different from the scaled warming 
PDF, and all the statistics correspond to those from section 3, with a factor of 3 K. For 
instance, the maps in Fig. 4 apply to the net case, but with the scale amplified to range 
from 1.2 K to 6 K. 
 
An idealised PDF that better reflects the uncertainty in global warming in this case, 
which I used previously, is illustrated in Fig. 5 –the SD=1K case. It is necessary to 
discretise this normal distribution, and 100 T points seem adequate. Now if the local 
warming ratio is a single value, say 1, the joint distribution is again simple. The net 
warming distribution is the same of the global result in Fig. 5. 
 
For the more general case additional calculations are needed. Two methods were used 
previously. One is a straight forward evaluation of the joint function at each x and T 
step. This gives 100000 values of probability, each corresponding to a net warming P 
simply given by xT. Ordering these by P allows a simple conversion to a CDF as a 
function of P. The second method makes use of the simple form for P, and the 
separate nature of the joint function. This appears to be computationally more 
efficient by a factor of about 10.  
 
The net warming PDFs for the central point, determined for the SD=1 global warming 
case and each scaled case, are shown in Fig. 6. The differences are surprisingly small. 
The Uniform and Narrow cases give a slightly narrower net warming. Performing the 
calculation at every grid point leads to the maps shown in Fig. 7. Again, there is very 
little difference across the five for the 10, 50 and 90 percentiles shown. 
 
The similarity across the five cases is due to the scaled warming PDFs being all 
relatively narrow, in comparison with the global warming one. A case intermediate 
between the SD=1 case and the single T case above is for the SD = 0.2 curve shown 
in Fig. 5. This produces the net warming curves for the central point shown in Fig. 8. 
The PDFs more closely reflect the differences in Fig. 3. 
 
5. Summary 
 
This note applies the method previously described for generating PDFs for scaled 
warming and net warming to points over SE Australia. The range of possible results at 
each point is evident from the maps of 10 and 90 percentile statistics that are 
generated. The choice of the four models and their weighting used here is only for 
example purposes.  
 
As previously, five different types of scaled warming PDF are considered. Support for 
using each of these could be argued, although the uniform distribution, with no 
weighting of models is clearly outdated. The three other methods of fitting the spread 
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of individual model results produce rather similar net warmings, in practice. The Beta 
case has the advantage of allowing a non-zero skewness and a finite range using only 
four parameters. Given the popularity of Bayesian methods, which (as I understand it) 
lead to narrowing ranges as the number of models increases, the Narrow case should 
also be considered. Fortunately, evaluation of all five cases, even for multiple T 
scenarios, seems quite feasible. Application of the method to a larger set of models 
and other variables is recommended.  
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Fig. 1. Change in mean surface air temperature over SEA land divided by global 
annual mean change for DJF, between years 1976 and 2100, under the A1B scenario, 
from (a) Mk3.0, (b) Mk3.5, (c) HadGEM, (d) GFDL2.1, (e) weighted mean of one to 
four models, (f) weighted mean of all four models, (g) weighted mean of four models 
from land and sea values, and (h) AR4 multi-model mean. 
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Fig. 2 Histogram representing skill of four models and the MMM in reproducing 
observational climatological means using data from SEA land for quantities surface 
air temperature (Ta), precipitation (P) and sea-level pressure (SLP). Bars up from 0 
are the M score, bars down from 1 are the M score representing the mean bias over 
SEA. Both are averaged over the DJF and JJA results. A + or – symbol is shown 
when the mean bias is of the same sign in both seasons. An additional observational 
result from ERA40 (1958-2001) is also considered. For SLP, the M score for ERA is 
unity, as ERA is used as the observed. All data were interpolated to the common 
BOM grid, and land points in the plotted domain used. 
 
 

 
 
Fig. 3. Probability distribution function for the warming ratio at point 142°E, 31°S 
calculated from the four models, using five methods, as in key. 
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Fig. 4. Maps of percentiles of the warming ratio from all distributions (top to bottom) 
Sum, Normal, Beta, Uniform, and Narrow: Left column 10%, Middle column 50% 
and right column 90%. 
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Fig. 5. Idealised distribution of global mean warming, based on the normal 
distribution with 3 K and SD 1 K or 0.2 K. 
 
 
 

  
Fig. 6. Probability distribution function for net warming at point 142°E, 31°S 
calculated from the five ratio PDFs (as in the key) and the SD 1K global warming 
PDF. 
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Fig. 7. Maps of percentiles of net warming from all distributions (top to bottom) Sum, 
Normal, Beta, Uniform, and Narrow: Left column 10%, Middle column 50% and 
right column 90%. 
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Fig. 8. Probability distribution function for the net warming at point 142°E, 31°S 
calculated from the five ratio PDFs (as in the key) and the SD 0.2 K global warming 
PDF. 

 
 
References 
 
Watterson, I. G. (2006) Some methods for specifying PDFs. Internal report, dated 14-
02-06. 
 
Watterson, I. G. (2005) Climate change for the IPCC scenarios simulated by the IPCC 
multi-model ensemble: results scaled by global mean warming. Internal report, dated 
24 May 2005. 
 
Watterson, I. G., J. McGregor, and K. Nguyen (2006) Influence of winds on changes 
in extreme temperatures near Australian coasts, as simulated by CCAM. Abstract for 
the AMOS National Conference, Adelaide, February 2007 
 
Whetton et al. (2005) Australian climate change projections for impact assessment 
and policy application: A review. CMAR Res. Papr. 1. 
 
For details on the CSIRO Mk3 and Mk3.5 simulations, see 
cherax.hpsc.csiro.au/users/dix043/mk3runs/ 
 
For the full IPCC dataset, see http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php 

  65



  

 
Appendix 2 
Selecting climate change results based on model performance 
Ian Smith and Elise Chandler 
 
It can be argued that weighting models is not ideal since it implies that the results 
from better performing models can be diluted when combined with the results of 
poorer performing models. Chandler (2007) provides a preliminary analysis of 
projections by deliberately ignoring all but the best performing models over the 
Australian region. Here we describe some further results based on this technique as 
applied to the MDB region. 
 
Since rainfall is one of the most difficult variables to simulate accurately, we argue 
that a reliable projection of rainfall must be accompanied by a reasonable simulation 
of present day rainfall. An assumption here is that a model must, by definition, 
accurately simulate a number of variables (moisture content, temperatures, winds, 
pressure etc.) correctly if it is to simulate rainfall correctly. Secondly, we also argue 
that , because Australia is a continent encompassing a wide range of climate regimes, 
that a regional projection is more likely to be reliable if the model can capture the 
variability in space over the wider Australian region. Thirdly, we also argue that, in 
addition to accurately simulating the means and spatial variability, the ability to 
simulate the seasonal cycle also provides an important performance measure. 
 
23 AR4 model results (based on the A1B emissions scenario) were assessed. Several 
approaches were taken to determine the best models performing models. The first of 
these involved using threshold values for the correlation coefficient and RMSE. 
Following Suppiah et al. (2004), a threshold value of 0.7 chosen as the minimum 
value for the spatial correlation coefficient. A set of best model results were then 
selected as those with above median correlation coefficients and those with below 
median RMS errors. In addition to assessing the seasonal mean values, the models 
were also assessed in terms of their ability to reproduce the seasonal cycle of rainfall 
at several key locations, including the MDB. Finally, the results from the coarse 
resolution models were excluded since previous studies have highlighted the 
importance of horizontal resolution and the representation of topography as crucial to 
model rainfall. 

 
The details of the full assessment are not shown here but, it is apparent that some 
simulations are clearly inferior, failing to adequately reproduce either the broad 
spatial patterns or the quantitative amounts. In particular, the models IPSL-cm4, 
BCCR-BCM2, GISS-EH, GISS-AOM, and FGOALS-G1.0 performed poorly in 
regions of high rainfall (not shown). At the shorter seasonal timescale, spring and 
autumn were the seasons most difficult to simulate and this proved to highlight the 
better performing models.  
 
Of the 23 models, 7 were assessed to provide the best simulations of present day 
rainfall: 
GFDL-Cm2.0 
ECHAM5 
GISS-AOM 
UKMO-HADcm3 
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MIROC3.2 (hires) 
GFDL-CM2.1 and  
UKMO-HADgem1.  
 
Annual and seasonal percentage changes in rainfall for the region shown in Figure 1 
for the period 2071-2100 relative to 1971-2000 based on the results using the A1B 
emissions scenarios (a mid-range scenario) were calculated for each model. These 
were then divided by the same model’s estimate of global temperature increase over 
this period to arrive at a percentage change per degree of global warming. These 
values are shown in Table 1. 
 
.  

 
 

Figure 1. Map showing grid points used to define the Murray-Darling river basin. 
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Table 1. List of 23 model results for the projected percentage change in rainfall (per 
degree of global warming) over the MDB region. The top 7 selected models are 
highlighted. The 22-model average shown excludes the results for BCCR-BCM2. 
 

 Percentage change in rainfall 
 Model  Annual  Seasonal 

    DJF MAM JJA SON 
1 CSIRO-Mk3  -11.322 4.466 -15.344 -21.270 -30.431
2 GFDL-CM2.0  -12.410 28.991 3.562 -24.669 -34.333
3 MRI-CGCM2.3.2  -10.466 -23.397 -21.245 -23.397 -5.572
4 ECHAM5/MPI  -13.484 -5.725 15.261 -31.692 -32.450
5 GISS-ER  5.210 20.388 1.922 -17.495 -1.846
7 FGOALS-G1.0  -4.575 -3.917 -10.238 -5.016 -1.659
8 MIROC3.2(medres)  20.688 48.390 41.733 -11.238 -0.223
9 ECHO-G  22.783 59.088 22.942 -16.677 1.451

10 CCSM3  7.205 12.315 7.876 -10.856 15.790
11 GISS-AOM  -20.329 -28.843 19.923 -26.280 -29.721
12 UKMO-Hadcm3  -14.435 -7.082 6.650 -10.674 -40.274
13 GISS-EH  18.648 23.904 19.404 13.046 13.502
14 INM-cm3.0  -6.851 7.147 3.022 -19.065 -17.389
15 MIROC3.2(hires)  -6.016 5.458 6.496 -13.575 -25.254
16 CGCM3.1(t47)  11.343 6.238 14.308 15.988 8.202
17 GFDL2.1  -19.963 -1.245 -23.409 -46.104 -12.085
18 CGCM3.1(t63)  18.705 34.496 14.570 11.931 11.583
19 BCCR-BCM2  10.103 12.732 37.770 -12.632 5.467
20 CNRM-CM3  -7.372 7.360 18.003 -36.970 -35.549
21 IPSL-CM4  -33.637 -19.862 -31.908 -34.185 -52.639
22 UKMO-HADGEM1  -18.704 8.374 -28.881 -35.057 -30.272
23 PCM  -5.919 -7.968 -9.864 11.399 -16.497

 
22-model average -3.2 8.2 4.2 -16 -14 
22-model range -33 to +23 -24 to +59 -31 to +42 -46 to +16 -53 to +16 
Best 7 average -15 -0.01 -0.06 -27 -29 
Best 7 range -20 to -6 -29 to +8 -29 to +20 -46 to -11 -40 to -12 

 
The important result from this assessment is that the average changes from the best 7 
models are more negative than the 22-model averages. Furthermore, this is not purely 
an artefact of the different sample sizes. T-statistics indicate that the best-7 sample 
results for rainfall and changes are significantly different to those of the remaining 15 
models. For example, the chances that the 7-model average percentage change in 
annual rainfall (-15%) comes from the same population as the remaining 15 models is 
close to .001. In other words, the 7-best models form a distinctly different sub-set to 
the other models. This is what we would expect if a poor simulation of present day 
climate is associated with an unreliable prediction of future climate. 
 
These results need to be confirmed and recast into probabilities but it is apparent that 
the application of this new method paints a somewhat more pessimistic outlook for 
rainfall over the MDB into the future than previously indicated. We expect that it will 
be possible (Project 2.2.3b) to refine the projections for this region to better satisfy 
stakeholder expectations. 
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